dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorImperial College London
dc.date.accessioned2014-05-27T11:21:16Z
dc.date.accessioned2022-10-05T17:55:39Z
dc.date.available2014-05-27T11:21:16Z
dc.date.available2022-10-05T17:55:39Z
dc.date.created2014-05-27T11:21:16Z
dc.date.issued2005-02-01
dc.identifierDiscrete and Continuous Dynamical Systems - Series B, v. 5, n. 1, p. 51-66, 2005.
dc.identifier1531-3492
dc.identifierhttp://hdl.handle.net/11449/68120
dc.identifierWOS:000226741800005
dc.identifier2-s2.0-15844409937
dc.identifier2-s2.0-15844409937.pdf
dc.identifier6682867760717445
dc.identifier0000-0003-2037-8417
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3917700
dc.description.abstractWe study the existence of periodic solutions in the neighbourhood of symmetric (partially) elliptic equilibria in purely reversible Hamiltonian vector fields. These are Hamiltonian vector fields with an involutory reversing symmetry R. We contrast the cases where R acts symplectically and anti-symplectically. In case R acts anti-symplectically, generically purely imaginary eigenvalues are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold containing symmetric periodic solutions encircling the equilibrium point. In case R acts symplectically, generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is contained in two two-dimensional invariant manifolds containing nonsymmetric periodic solutions encircling the equilibrium point. In addition, there exists a three-dimensional invariant surface containing a two-parameter family of symmetric periodic solutions.
dc.languageeng
dc.relationDiscrete and Continuous Dynamical Systems: Series B
dc.relation0.972
dc.relation0,864
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectLiapunov center theorem
dc.subjectTime-reversal symmetry
dc.titleReversible Hamiltonian Liapunov center theorem
dc.typeArtigo


Este ítem pertenece a la siguiente institución