dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorIndian Institute of Science
dc.date.accessioned2014-05-27T11:21:09Z
dc.date.accessioned2022-10-05T17:53:56Z
dc.date.available2014-05-27T11:21:09Z
dc.date.available2022-10-05T17:53:56Z
dc.date.created2014-05-27T11:21:09Z
dc.date.issued2004-10-01
dc.identifierJournal of High Energy Physics, v. 8, n. 10, p. 483-499, 2004.
dc.identifier1029-8479
dc.identifierhttp://hdl.handle.net/11449/67886
dc.identifier10.1088/1126-6708/2004/10/024
dc.identifierWOS:000225641100054
dc.identifier2-s2.0-23044504233
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3917488
dc.description.abstractWe study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.
dc.languageeng
dc.relationJournal of High Energy Physics
dc.relation5.541
dc.relation1,227
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectMatrix models
dc.subjectModels of Quantum Gravity
dc.subjectNon-Commutative Geometry
dc.titleQuantum topology change and large-N gauge theories
dc.typeArtigo


Este ítem pertenece a la siguiente institución