Artigo
Mecanismos de absorção de aminoácidos e oligopeptídios. Controle e implicações na dietoterapia humana
Fecha
1999-12-01Registro en:
Arquivos de Gastroenterologia, v. 36, n. 4, p. 227-237, 1999.
0004-2803
10.1590/S0004-28031999000400011
S0004-28031999000400011
2-s2.0-8744275451
2-s2.0-8744275451.pdf
2287552780901172
Autor
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Resumen
The mechanisms involved in the absorption of amino acids and oligopeptides are reviewed regarding their implications in human feedings. Brush border and basolateral membranes are crossed by amino acids and di-tripeptides by passive (facilitated or simple diffusion) or active (Na + or H + co-transporters) pathways. Active Na +-dependent system occurs mainly at brush border and simple diffusion at basolateral, both membranes have the passive facilitated transport. Free-amino acids use either passive or active transport systems whereas di-tripeptides do mainly active (H + co-transporter). Brush border have distinctive transport system for amino acids and di-tripeptides. The former occurs mainly by active Na + dependency whereas the later is active H +-dependent with little affinity for tetra or higher peptides. Free amino acids are transported at different speed by saturable, competitive carriers with specificity for basic, acidic or neutral amino acids. Di and tripeptides have at least two carriers both electrogenic and H +-dependent. The basolateral membrane transport of amino acids is mostly by facilitated diffusion while for di-tripeptides it is an active anion exchange associated process. The main regulation of amino acids and di-tripeptide transport is the presence o substrate at the mucosal membrane with higher the substrate higher the absorption. Di and tripeptides are more efficiently absorbed than free amino acids which in turns are better absorbed than oligopeptides. So di-tripeptides result in better N-retention and is particularly useful in cases of lower intestinal absorption capacity. The non-absorbed peptides are digested and fermented by colonic bacteria resulting short-chain fatty acids, dicarboxylic acids, phenolic compounds and ammonia. Short-chain fatty acid provides energy for colonocytes and bacteria and the ammonia not fixed by bacteria returns to the liver for ureagenesis.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Efeito do consumo das proteínas, peptídeos e aminoácidos do soro do leite nas heat shock proteins (HSPs) e parâmetros relacionados em ratos = Effect of the intake of whey proteins, their peptides and amino acids on the heat shock proteins (HSPs) and health related parameters in rats
Moura, Carolina Soares de, 1988- -
ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence
Qiu, J.; Bernhofer, M.; Heinzinger, M.; Kemper, S.; Norambuena Arenas, Tomás; Melo Ledermann, Francisco Javier; Rost, B. (2020)