dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:19:49Z
dc.date.accessioned2022-10-05T17:40:05Z
dc.date.available2014-05-27T11:19:49Z
dc.date.available2022-10-05T17:40:05Z
dc.date.created2014-05-27T11:19:49Z
dc.date.issued1999-12-01
dc.identifierProceedings of the International Joint Conference on Neural Networks, v. 6, p. 3816-3820.
dc.identifierhttp://hdl.handle.net/11449/65954
dc.identifier10.1109/IJCNN.1999.830762
dc.identifier2-s2.0-0033333480
dc.identifier8212775960494686
dc.identifier5589838844298232
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3915805
dc.description.abstractThis paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.
dc.languageeng
dc.relationProceedings of the International Joint Conference on Neural Networks
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectAtmospheric humidity
dc.subjectComputer simulation
dc.subjectElectric fields
dc.subjectElectric potential
dc.subjectLightning
dc.subjectMathematical models
dc.subjectPressure effects
dc.subjectThermal effects
dc.subjectWaveform analysis
dc.subjectCritical disruptive voltage
dc.subjectElectrical field intensity
dc.subjectNeural networks
dc.titleEvaluation and identification of lightning models by artificial neural networks
dc.typeTrabalho apresentado em evento


Este ítem pertenece a la siguiente institución