dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:18:18Z
dc.date.accessioned2022-10-05T17:35:14Z
dc.date.available2014-05-27T11:18:18Z
dc.date.available2022-10-05T17:35:14Z
dc.date.created2014-05-27T11:18:18Z
dc.date.issued1997-12-01
dc.identifierIEEE Power Engineering Review, v. 17, n. 12, p. 58-, 1997.
dc.identifier0272-1724
dc.identifierhttp://hdl.handle.net/11449/65277
dc.identifier10.1109/PICA.1997.599370
dc.identifier2-s2.0-35848956337
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3915220
dc.description.abstractWe have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
dc.languageeng
dc.relationIEEE Power Engineering Review
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCombinatorial optimization
dc.subjectGenetic algorithm
dc.subjectNetwork static expansion planning
dc.subjectSimulated annealing
dc.subjectTabu search
dc.titleComparative studies on non-convex optimization methods for transmission network expansion planning
dc.typeArtigo


Este ítem pertenece a la siguiente institución