dc.contributorIntl. School for Advanced Studies
dc.contributorINFN
dc.contributorIntl. Centre for Theoretical Physics
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:18:07Z
dc.date.accessioned2022-10-05T17:32:14Z
dc.date.available2014-05-27T11:18:07Z
dc.date.available2022-10-05T17:32:14Z
dc.date.created2014-05-27T11:18:07Z
dc.date.issued1996-10-31
dc.identifierPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, v. 387, n. 4, p. 759-768, 1996.
dc.identifier0370-2693
dc.identifierhttp://hdl.handle.net/11449/64866
dc.identifier10.1016/0370-2693(96)01106-9
dc.identifier2-s2.0-0010798478
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3914848
dc.description.abstractIn analogy with the Liouville case we study the sl3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra.
dc.languageeng
dc.relationPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
dc.relation4.254
dc.relation2,336
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectDiscrete W algebra
dc.subjectN-KdV hierarchy
dc.subjectQuantum W algebra
dc.subjectToda field theory
dc.subjectToda lattice hierarchy
dc.titleToda lattice field theories, discrete W algebras, Toda lattice hierarchies and quantum groups
dc.typeArtigo


Este ítem pertenece a la siguiente institución