dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | University of St. Andrews | |
dc.date.accessioned | 2014-05-27T11:18:05Z | |
dc.date.accessioned | 2022-10-05T17:31:41Z | |
dc.date.available | 2014-05-27T11:18:05Z | |
dc.date.available | 2022-10-05T17:31:41Z | |
dc.date.created | 2014-05-27T11:18:05Z | |
dc.date.issued | 1996-06-01 | |
dc.identifier | Applied Numerical Mathematics, v. 21, n. 2, p. 175-183, 1996. | |
dc.identifier | 0168-9274 | |
dc.identifier | http://hdl.handle.net/11449/64790 | |
dc.identifier | 10.1016/0168-9274(96)00008-6 | |
dc.identifier | WOS:A1996UY38600004 | |
dc.identifier | 2-s2.0-0030166940 | |
dc.identifier | 3587123309745610 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3914784 | |
dc.description.abstract | We prove a relation between two different types of symmetric quadrature rules, where one of the types is the classical symmetric interpolatory quadrature rules. Some applications of a new quadrature rule which was obtained through this relation are also considered. | |
dc.language | eng | |
dc.relation | Applied Numerical Mathematics | |
dc.relation | 1.263 | |
dc.relation | 0,930 | |
dc.rights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Calculations | |
dc.subject | Functions | |
dc.subject | Integration | |
dc.subject | Interpolation | |
dc.subject | Poles and zeros | |
dc.subject | Polynomials | |
dc.subject | Classical symmetry distribution | |
dc.subject | Monic orthogonal polynomials | |
dc.subject | Symmetric quadrature rules | |
dc.subject | Numerical methods | |
dc.title | Associated symmetric quadrature rules | |
dc.type | Artigo | |