dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversity of St. Andrews
dc.date.accessioned2014-05-27T11:18:05Z
dc.date.accessioned2022-10-05T17:31:41Z
dc.date.available2014-05-27T11:18:05Z
dc.date.available2022-10-05T17:31:41Z
dc.date.created2014-05-27T11:18:05Z
dc.date.issued1996-06-01
dc.identifierApplied Numerical Mathematics, v. 21, n. 2, p. 175-183, 1996.
dc.identifier0168-9274
dc.identifierhttp://hdl.handle.net/11449/64790
dc.identifier10.1016/0168-9274(96)00008-6
dc.identifierWOS:A1996UY38600004
dc.identifier2-s2.0-0030166940
dc.identifier3587123309745610
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3914784
dc.description.abstractWe prove a relation between two different types of symmetric quadrature rules, where one of the types is the classical symmetric interpolatory quadrature rules. Some applications of a new quadrature rule which was obtained through this relation are also considered.
dc.languageeng
dc.relationApplied Numerical Mathematics
dc.relation1.263
dc.relation0,930
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCalculations
dc.subjectFunctions
dc.subjectIntegration
dc.subjectInterpolation
dc.subjectPoles and zeros
dc.subjectPolynomials
dc.subjectClassical symmetry distribution
dc.subjectMonic orthogonal polynomials
dc.subjectSymmetric quadrature rules
dc.subjectNumerical methods
dc.titleAssociated symmetric quadrature rules
dc.typeArtigo


Este ítem pertenece a la siguiente institución