dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:17:28Z
dc.date.accessioned2022-10-05T17:27:19Z
dc.date.available2014-05-27T11:17:28Z
dc.date.available2022-10-05T17:27:19Z
dc.date.created2014-05-27T11:17:28Z
dc.date.issued1992-03-02
dc.identifierPhysics Letters A, v. 162, n. 6, p. 457-463, 1992.
dc.identifier0375-9601
dc.identifierhttp://hdl.handle.net/11449/64227
dc.identifier10.1016/0375-9601(92)90006-8
dc.identifier2-s2.0-0001311633
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3914337
dc.description.abstractWe study the interaction of resonances with the same order in families of integrable Hamiltonian systems. This can occur when the unperturbed Hamiltonian is at least cubic in the actions. An integrable perturbation coupling the action-angle variables leads to the disappearance of an island through the coalescence of stable and unstable periodic orbits and originates a complex orbit plus an isolated cubic resonance. The chaotic layer that appears when a general term is added to the Hamiltonian survives even after the disappearance of the unstable periodic orbit. © 1992.
dc.languageeng
dc.relationPhysics Letters A
dc.relation1.863
dc.relation0,595
dc.rightsAcesso restrito
dc.sourceScopus
dc.titleIntegrable approximation to the overlap of resonances
dc.typeArtigo


Este ítem pertenece a la siguiente institución