dc.contributorBox 4348
dc.contributorInst. of Nucl. Res. and Nucl. Energy
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T09:57:41Z
dc.date.accessioned2022-10-05T17:25:41Z
dc.date.available2014-05-27T09:57:41Z
dc.date.available2022-10-05T17:25:41Z
dc.date.created2014-05-27T09:57:41Z
dc.date.issued1990-12-01
dc.identifierPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, v. 240, n. 1-2, p. 127-132, 1990.
dc.identifier0370-2693
dc.identifierhttp://hdl.handle.net/11449/64026
dc.identifier10.1016/0370-2693(90)90420-B
dc.identifier2-s2.0-0009462036
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3914163
dc.description.abstractWe present a compact expression for the field theoretical actions based on the symplectic analysis of coadjoint orbits of Lie groups. The final formula for the action density α c becomes a bilinear form 〈(S, 1/λ), (y, m y)〉, where S is a 1-cocycle of the Lie group (a schwarzian type of derivative in conformai case), λ is a coefficient of the central element of the algebra and script Y sign ≡ (y, m y) is the generalized Maurer-Cartan form. In this way the action is fully determined in terms of the basic group theoretical objects. This result is illustrated on a number of examples, including the superconformal model with N = 2. In this case the method is applied to derive the N = 2 superspace generalization of the D=2 Polyakov (super-) gravity action in a manifest (2, 0) supersymmetric form. As a byproduct we also find a natural (2, 0) superspace generalization of the Beltrami equations for the (2, 0) supersymmetric world-sheet metric describing the transition from the conformal to the chiral gauge.
dc.languageeng
dc.relationPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
dc.relation4.254
dc.relation2,336
dc.rightsAcesso restrito
dc.sourceScopus
dc.titleSymplectic actions on coadjoint orbits
dc.typeArtigo


Este ítem pertenece a la siguiente institución