dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:33:44Z
dc.date.accessioned2022-10-05T17:17:10Z
dc.date.available2014-05-20T15:33:44Z
dc.date.available2022-10-05T17:17:10Z
dc.date.created2014-05-20T15:33:44Z
dc.date.issued2008-10-01
dc.identifierNonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 69, n. 7, p. 1889-1903, 2008.
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11449/42286
dc.identifier10.1016/j.na.2007.07.031
dc.identifierWOS:000258359300001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3913149
dc.description.abstractIn this paper we get some lower bounds for the number of critical periods of families of centers which are perturbations of the linear one. We give a method which lets us prove that there are planar polynomial centers of degree l with at least 2[(l - 2)/2] critical periods as well as study concrete families of potential, reversible and Lienard centers. This last case is studied in more detail and we prove that the number of critical periods obtained with our approach does not. increases with the order of the perturbation. (C) 2007 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relation1.291
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectperiod function
dc.subjectcritical periods
dc.subjectperturbations
dc.subjectpotential systems
dc.subjectreversible centers
dc.subjectHamiltonian centers
dc.subjectLienard centers
dc.titleOn the number of critical periods for planar polynomial systems
dc.typeArtigo


Este ítem pertenece a la siguiente institución