dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-20T15:31:56Z
dc.date.accessioned2022-10-05T17:07:28Z
dc.date.available2014-05-20T15:31:56Z
dc.date.available2022-10-05T17:07:28Z
dc.date.created2014-05-20T15:31:56Z
dc.date.issued2009-12-15
dc.identifierMaterials Science and Engineering B-advanced Functional Solid-state Materials. Amsterdam: Elsevier B.V., v. 165, n. 3, p. 243-246, 2009.
dc.identifier0921-5107
dc.identifierhttp://hdl.handle.net/11449/40958
dc.identifier10.1016/j.mseb.2009.06.011
dc.identifierWOS:000273157800025
dc.identifier4741480538883395
dc.identifier0000-0002-2042-018X
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3911899
dc.description.abstractLocal anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables oil response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12. an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nonocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment. (c) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationMaterials Science and Engineering B: Advanced Functional Solid-state Materials
dc.relation3.316
dc.relation0,779
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectBenzocaine
dc.subjectNanocapsules
dc.subjectPLGA
dc.subjectDrug delivery
dc.titleBenzocaine loaded biodegradable poly-(D,L-lactide-co-glycolide) nanocapsules: factorial design and characterization
dc.typeArtigo


Este ítem pertenece a la siguiente institución