dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorFed Ctr Educ Technol
dc.date.accessioned2014-05-20T15:28:36Z
dc.date.accessioned2022-10-05T16:49:48Z
dc.date.available2014-05-20T15:28:36Z
dc.date.available2022-10-05T16:49:48Z
dc.date.created2014-05-20T15:28:36Z
dc.date.issued2006-03-01
dc.identifierJournal of Optimization Theory and Applications. New York: Springer/plenum Publishers, v. 128, n. 3, p. 563-580, 2006.
dc.identifier0022-3239
dc.identifierhttp://hdl.handle.net/11449/38376
dc.identifier10.1007/s10957-006-9032-9
dc.identifierWOS:000241554100005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3909713
dc.description.abstractNeural networks consist of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural net-works that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its inter-nal parameters are computed explicitly using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the problem considered. The problems that can be treated by the proposed approach include combinatorial optimiza-tion problems, dynamic programming problems, and nonlinear optimization problems.
dc.languageeng
dc.publisherSpringer
dc.relationJournal of Optimization Theory and Applications
dc.relation1.234
dc.relation0,813
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectrecurrent neural networks
dc.subjectnonlinear optimization
dc.subjectdynamic programming
dc.subjectcombinatorial optimization
dc.subjectHopfield network
dc.titleNeural approach for solving several types of optimization problems
dc.typeArtigo


Este ítem pertenece a la siguiente institución