dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2014-05-20T15:28:32Z
dc.date.accessioned2022-10-05T16:49:24Z
dc.date.available2014-05-20T15:28:32Z
dc.date.available2022-10-05T16:49:24Z
dc.date.created2014-05-20T15:28:32Z
dc.date.issued2006-05-01
dc.identifierPhysical Review B. College Pk: Amer Physical Soc, v. 73, n. 19, 4 p., 2006.
dc.identifier1098-0121
dc.identifierhttp://hdl.handle.net/11449/38324
dc.identifier10.1103/PhysRevB.73.193407
dc.identifierWOS:000237950400031
dc.identifierWOS000237950400031.pdf
dc.identifier4459191234201599
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3909667
dc.description.abstractWe discuss the interplay between electronic correlations and an underlying superlattice structure in determining the period of charge density waves (CDW's), by considering a one-dimensional Hubbard model with a repeated (nonrandom) pattern of repulsive (U > 0) and free (U=0) sites. Density matrix renormalization group diagonalization of finite systems (up to 120 sites) is used to calculate the charge-density correlation function and structure factor in the ground state. The modulation period can still be predicted through effective Fermi wave vectors k(F)(*) and densities, and we have found that it is much more sensitive to electron (or hole) doping, both because of the narrow range of densities needed to go from q(*)=0 to pi, but also due to sharp 2k(F)(*)-4k(F)(*) transitions; these features render CDW's more versatile for actual applications in heterostructures than in homogeneous systems.
dc.languageeng
dc.publisherAmer Physical Soc
dc.relationPhysical Review B
dc.relation1,604
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleModulation of charge-density waves by superlattice structures
dc.typeArtigo


Este ítem pertenece a la siguiente institución