dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:23:47Z
dc.date.accessioned2022-10-05T16:24:06Z
dc.date.available2014-05-20T15:23:47Z
dc.date.available2022-10-05T16:24:06Z
dc.date.created2014-05-20T15:23:47Z
dc.date.issued1994-04-01
dc.identifierManuscripta Mathematica. New York: Springer Verlag, v. 83, n. 1, p. 1-18, 1994.
dc.identifier0025-2611
dc.identifierhttp://hdl.handle.net/11449/34484
dc.identifier10.1007/BF02567596
dc.identifierWOS:A1994NH44000001
dc.identifier3186337502957366
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3906611
dc.description.abstractWe define a cohomological invariant E(G, S, M) where G is a group, S is a non empty family of (not necessarily distinct) subgroups of infinite index in G and M is a F2G-module (F2 is the field of two elements). In this paper we are interested in the special case where the family of subgroups consists of just one subgroup, and M is the F2G-module F2(G/S). The invariant E(G, {S}, F2(G/S)) will be denoted by E(G, S). We study the relations of this invariant with other ends e(G) , e(G, S) and e(G, S), and some results are obtained in the case where G and S have certain properties of duality.
dc.languageeng
dc.publisherSpringer
dc.relationManuscripta Mathematica
dc.relation0.677
dc.relation1,053
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleA RELATIVE COHOMOLOGICAL INVARIANT FOR GROUP PAIRS
dc.typeArtigo


Este ítem pertenece a la siguiente institución