Artigo
D-n-forced symmetry breaking of O(2)-equivariant problems
Fecha
2002-01-01Registro en:
Proceedings of the Royal Society of Edinburgh Section A-mathematics. Edinburgh: Royal Soc Edinburgh, v. 132, p. 1185-1218, 2002.
0308-2105
10.1017/S0308210500002079
WOS:000179570300009
WOS000179570300009.pdf
Autor
Brunel Univ
Universidade Estadual Paulista (Unesp)
Resumen
We use singularity theory to classify forced symmetry-breaking bifurcation problemsf(z, lambda, mu) = f(1)(z, lambda) + muf(2)(z, lambda, mu) = 0,where f(1) is O(2)-equivariant and f(2) is D-n-equivariant with the orthogonal group actions on z is an element of R-2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.