dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorITA
dc.contributorUniv Malaga
dc.date.accessioned2014-05-20T15:22:38Z
dc.date.accessioned2022-10-05T16:17:41Z
dc.date.available2014-05-20T15:22:38Z
dc.date.available2022-10-05T16:17:41Z
dc.date.created2014-05-20T15:22:38Z
dc.date.issued2003-05-01
dc.identifierJournal of Computational Chemistry. Hoboken: John Wiley & Sons Inc., v. 24, n. 7, p. 869-875, 2003.
dc.identifier0192-8651
dc.identifierhttp://hdl.handle.net/11449/33581
dc.identifier10.1002/jcc.10199
dc.identifierWOS:000182499000008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3905885
dc.description.abstractThis article introduces an efficient method to generate structural models for medium-sized silicon clusters. Geometrical information obtained from previous investigations of small clusters is initially sorted and then introduced into our predictor algorithm in order to generate structural models for large clusters. The method predicts geometries whose binding energies are close (95%) to the corresponding value for the ground-state with very low computational cost. These predictions can be used as a very good initial guess for any global optimization algorithm. As a test case, information from clusters up to 14 atoms was used to predict good models for silicon clusters up to 20 atoms. We believe that the new algorithm may enhance the performance of most optimization methods whenever some previous information is available. (C) 2003 Wiley Periodicals, Inc.
dc.languageeng
dc.publisherWiley-Blackwell
dc.relationJournal of Computational Chemistry
dc.relation3.221
dc.relation1,201
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectclassifier system
dc.subjectoptimization
dc.subjectcluster
dc.subjectstructural models
dc.subjectgenetic algorithm
dc.titlePredicting structural models for silicon clusters
dc.typeArtigo


Este ítem pertenece a la siguiente institución