dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T18:10:35Z
dc.date.accessioned2014-05-20T14:16:07Z
dc.date.accessioned2022-10-05T15:11:00Z
dc.date.available2013-09-30T18:10:35Z
dc.date.available2014-05-20T14:16:07Z
dc.date.available2022-10-05T15:11:00Z
dc.date.created2013-09-30T18:10:35Z
dc.date.created2014-05-20T14:16:07Z
dc.date.issued2009-01-01
dc.identifierNonlinear Dynamics. Dordrecht: Springer, v. 55, n. 1-2, p. 139-149, 2009.
dc.identifier0924-090X
dc.identifierhttp://hdl.handle.net/11449/24849
dc.identifier10.1007/s11071-008-9350-6
dc.identifierWOS:000262088500010
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3898026
dc.description.abstractIn this paper, an optimal linear control is applied to control a chaotic oscillator with shape memory alloy (SMA). Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function, which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. This work is presented in two parts. Part I considers the so-called ideal problem. In the ideal problem, the excitation source is assumed to be an ideal harmonic excitation.
dc.languageeng
dc.publisherSpringer
dc.relationNonlinear Dynamics
dc.relation4.339
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectChaos control
dc.subjectShape memory alloy
dc.subjectNonlinear dynamic
dc.subjectLinear feedback control
dc.titleChaos control of a nonlinear oscillator with shape memory alloy using an optimal linear control: Part I: Ideal energy source
dc.typeArtigo


Este ítem pertenece a la siguiente institución