dc.contributorUniversidade Federal de Uberlândia (UFU)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-02-26T17:19:18Z
dc.date.accessioned2014-05-20T14:16:03Z
dc.date.accessioned2022-10-05T15:10:47Z
dc.date.available2014-02-26T17:19:18Z
dc.date.available2014-05-20T14:16:03Z
dc.date.available2022-10-05T15:10:47Z
dc.date.created2014-02-26T17:19:18Z
dc.date.created2014-05-20T14:16:03Z
dc.date.issued2004-08-01
dc.identifierMeccanica. Dordrecht: Kluwer Academic Publ, v. 39, n. 4, p. 313-330, 2004.
dc.identifier0025-6455
dc.identifierhttp://hdl.handle.net/11449/24822
dc.identifier10.1023/B:MECC.0000029362.77515.b1
dc.identifierWOS:000221686400002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3898001
dc.description.abstractIt is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
dc.languageeng
dc.publisherKluwer Academic Publ
dc.relationMeccanica
dc.relation2.211
dc.relation0,814
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectcenter manifold
dc.subjectstability
dc.subjectbifurcation
dc.subjectnon-ideal problems
dc.subjectnon-linear oscillations
dc.titleOn local analysis of oscillations of a non-ideal and non-linear mechanical model
dc.typeArtigo


Este ítem pertenece a la siguiente institución