dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T18:55:53Z
dc.date.accessioned2014-05-20T14:10:34Z
dc.date.accessioned2022-10-05T15:06:33Z
dc.date.available2013-09-30T18:55:53Z
dc.date.available2014-05-20T14:10:34Z
dc.date.available2022-10-05T15:06:33Z
dc.date.created2013-09-30T18:55:53Z
dc.date.created2014-05-20T14:10:34Z
dc.date.issued2008-01-01
dc.identifierJournal of High Energy Physics. Trieste: Int School Advanced Studies, n. 1, p. 27, 2008.
dc.identifier1126-6708
dc.identifierhttp://hdl.handle.net/11449/24340
dc.identifier10.1088/1126-6708/2008/01/065
dc.identifierWOS:000252983400012
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3897530
dc.description.abstractAfter adding a pair of non-minimal fields and performing a similarity transformation, the BRST operator in the pure spinor formalism is expressed as a conventional-looking BRST operator involving the Virasoro constraint and (b, c) ghosts, together with 12 fermionic constraints. This BRST operator can be obtained by gauge-fixing the Green-Schwarz superstring where the 8 first-class and 8 second-class Green-Schwarz constraints are combined into 12 first-class constraints. Alternatively, the pure spinor BRST operator can be obtained from the RNS formalism by twisting the ten spin-half RNS fermions into five spin-one and five spin-zero fermions, and using the SO(10)/U(5) pure spinor variables to parameterize the different ways of twisting. GSO(-) vertex operators in the pure spinor formalism are constructed using spin fields and picture-changing operators in a manner analogous to Ramond vertex operators in the RNS formalism.
dc.languageeng
dc.publisherInt School Advanced Studies
dc.relationJournal of High Energy Physics
dc.relation1,227
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectsuperstrings and heterotic strings
dc.subjecttopological strings
dc.titleExplaining the pure spinor formalism for the superstring
dc.typeArtigo


Este ítem pertenece a la siguiente institución