dc.contributorCTA
dc.contributorUniversidade Federal Fluminense (UFF)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:08:04Z
dc.date.accessioned2022-10-05T15:03:03Z
dc.date.available2014-05-20T14:08:04Z
dc.date.available2022-10-05T15:03:03Z
dc.date.created2014-05-20T14:08:04Z
dc.date.issued2000-05-18
dc.identifierPhysics Letters B. Amsterdam: Elsevier B.V., v. 481, n. 1, p. 143-150, 2000.
dc.identifier0370-2693
dc.identifierhttp://hdl.handle.net/11449/23868
dc.identifier10.1016/S0370-2693(00)00437-8
dc.identifierWOS:000087213400021
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3897111
dc.description.abstractWe propose a framework to renormalize the nonrelativistic quantum mechanics with arbitrary singular interactions. The scattering equation is written to have one or more subtraction in the kernel at a given energy scale. The scattering amplitude is the solution of a nth order derivative equation in respect to the renormalization scale, which is the nonrelativistic counterpart of the Callan-Symanzik formalism, Scaled running potentials for the subtracted equations keep the physics invariant fur a sliding subtraction point. An example of a singular potential, that requires more than one subtraction to renormalize the theory is shown. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationPhysics Letters B
dc.relation4.254
dc.relation2,336
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectrenormalization
dc.subjectrenormalization group
dc.subjectnonrelativistic scattering theory
dc.titleRenormalization group invariance of quantum mechanics
dc.typeArtigo


Este ítem pertenece a la siguiente institución