dc.contributorUniv Illinois
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:06:21Z
dc.date.accessioned2022-10-05T14:59:27Z
dc.date.available2014-05-20T14:06:21Z
dc.date.available2022-10-05T14:59:27Z
dc.date.created2014-05-20T14:06:21Z
dc.date.issued2006-02-03
dc.identifierJournal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 39, n. 5, p. 1099-1114, 2006.
dc.identifier0305-4470
dc.identifierhttp://hdl.handle.net/11449/23290
dc.identifier10.1088/0305-4470/39/5/006
dc.identifierWOS:000235712500008
dc.identifier9287776078149551
dc.identifier8215976645016606
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3896703
dc.description.abstractA deformation parameter of a bihamiltonian structure of hydrodynamic type is shown to parametrize different extensions of the AKNS hierarchy to include negative flows. This construction establishes a purely algebraic link between, on the one hand, two realizations of the first negative flow of the AKNS model and, on the other, two-component generalizations of Camassa-Holmand Dym-type equations. The two-component generalizations of Camassa-Holm- and Dym-type equations can be obtained from the negative-order Hamiltonians constructed from the Lenard relations recursively applied on the Casimir of the first Poisson bracket of hydrodynamic type. The positive-order Hamiltonians, which follow froth the Lenard scheme applied on the Casimir of the second Poisson bracket of hydrodynamic type, are shown to coincide with the Hamiltonians of the AKNS model. The AKNS Hamiltonians give rise to charges conserved with respect to equations of motion of two-component Camassa-Holm- and two-component Dym-type equations.
dc.languageeng
dc.publisherIop Publishing Ltd
dc.relationJournal of Physics A: Mathematical and General
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleOn negative flows of the AKNS hierarchy and a class of deformations of a bihamiltonian structure of hydrodynamic type
dc.typeArtigo


Este ítem pertenece a la siguiente institución