dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2014-05-20T14:02:56Z | |
dc.date.accessioned | 2022-10-05T14:51:55Z | |
dc.date.available | 2014-05-20T14:02:56Z | |
dc.date.available | 2022-10-05T14:51:55Z | |
dc.date.created | 2014-05-20T14:02:56Z | |
dc.date.issued | 2010-01-01 | |
dc.identifier | Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 29, n. 3, p. 493-505, 2010. | |
dc.identifier | 1807-0302 | |
dc.identifier | http://hdl.handle.net/11449/22173 | |
dc.identifier | 10.1590/S1807-03022010000300010 | |
dc.identifier | S1807-03022010000300010 | |
dc.identifier | WOS:000287545100010 | |
dc.identifier | S1807-03022010000300010.pdf | |
dc.identifier | 8940498347481982 | |
dc.identifier | 7916375574050821 | |
dc.identifier | 0000-0002-4806-3399 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3895848 | |
dc.description.abstract | In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10. | |
dc.language | eng | |
dc.publisher | Sociedade Brasileira de Matemática Aplicada e Computacional | |
dc.relation | Computational & Applied Mathematics | |
dc.rights | Acesso aberto | |
dc.source | SciELO | |
dc.subject | algebraic lattice | |
dc.subject | algebraic number field | |
dc.subject | Center density | |
dc.subject | twisted canonical homomorphism | |
dc.title | Constructions of algebraic lattices | |
dc.type | Artigo | |