dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:02:56Z
dc.date.accessioned2022-10-05T14:51:53Z
dc.date.available2014-05-20T14:02:56Z
dc.date.available2022-10-05T14:51:53Z
dc.date.created2014-05-20T14:02:56Z
dc.date.issued2011-11-01
dc.identifierJournal of Mathematical Physics. Melville: Amer Inst Physics, v. 52, n. 11, p. 12, 2011.
dc.identifier0022-2488
dc.identifierhttp://hdl.handle.net/11449/22170
dc.identifier10.1063/1.3657425
dc.identifierWOS:000297938300013
dc.identifierWOS000297938300013.pdf
dc.identifier3757225669056317
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3895845
dc.description.abstractIn this paper we study the fourth order differential equation d(4)u/dt(4) + q d(2)u/dt(2) + u(3) - u = 0, which arises from the study of stationary solutions of the Extended Fisher-Kolmogorov equation. Denoting x = u, y = du/dt, z = d(2)u/dt(2), v = d(3)u/dt(3) this equation becomes equivalent to the polynomial system. (x) over dot = y, (y) over dot = z, (z) over dot = v, (v) over dot = x - qz - x(3) with (x, y, z, v) is an element of R(4) and q is an element of R. As usual, the dot denotes the derivative with respect to the time t. Since the system has a first integral we can reduce our analysis to a family of systems on R(3). We provide the global phase portrait of these systems in the Poincare ball (i.e., in the compactification of R(3) with the sphere S(2) of the infinity). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657425]
dc.languageeng
dc.publisherAmerican Institute of Physics (AIP)
dc.relationJournal of Mathematical Physics
dc.relation1.165
dc.relation0,644
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleGlobal dynamics of stationary solutions of the extended Fisher-Kolmogorov equation
dc.typeArtigo


Este ítem pertenece a la siguiente institución