dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorQuaid I Azam Univ
dc.date.accessioned2014-05-20T14:02:52Z
dc.date.accessioned2022-10-05T14:51:44Z
dc.date.available2014-05-20T14:02:52Z
dc.date.available2022-10-05T14:51:44Z
dc.date.created2014-05-20T14:02:52Z
dc.date.issued2011-08-01
dc.identifierComputers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 62, n. 4, p. 1645-1654, 2011.
dc.identifier0898-1221
dc.identifierhttp://hdl.handle.net/11449/22151
dc.identifier10.1016/j.camwa.2011.05.056
dc.identifierWOS:000294797400005
dc.identifier8940498347481982
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3895826
dc.description.abstractFor any finite commutative ring B with an identity there is a strict inclusion B[X; Z(0)] subset of B[X; Z(0)] subset of B[X; 1/2(2)Z(0)] of commutative semigroup rings. This work is a continuation of Shah et al. (2011) [8], in which we extend the study of Andrade and Palazzo (2005) [7] for cyclic codes through the semigroup ring B[X; 1/2; Z(0)] In this study we developed a construction technique of cyclic codes through a semigroup ring B[X; 1/2(2)Z(0)] instead of a polynomial ring. However in the second phase we independently considered BCH, alternant, Goppa, Srivastava codes through a semigroup ring B[X; 1/2(2)Z(0)]. Hence we improved several results of Shah et al. (2011) [8] and Andrade and Palazzo (2005) [7] in a broader sense. Published by Elsevier Ltd
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationComputers & Mathematics With Applications
dc.relation1.860
dc.relation1,058
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSemigroup
dc.subjectSemigroup ring
dc.subjectCyclic code
dc.subjectBCH code
dc.subjectGoppa code
dc.subjectSrivastava code
dc.titleConstructions of codes through the semigroup ring B[X; 1/2(2)Z(0)] and encoding
dc.typeArtigo


Este ítem pertenece a la siguiente institución