dc.contributorUniv Almeria
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:49Z
dc.date.accessioned2022-10-05T14:49:03Z
dc.date.available2014-05-20T14:01:49Z
dc.date.available2022-10-05T14:49:03Z
dc.date.created2014-05-20T14:01:49Z
dc.date.issued2010-11-01
dc.identifierJournal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 162, n. 11, p. 1945-1963, 2010.
dc.identifier0021-9045
dc.identifierhttp://hdl.handle.net/11449/21816
dc.identifier10.1016/j.jat.2010.05.003
dc.identifierWOS:000284569700003
dc.identifier8300322452622467
dc.identifier0000-0002-6823-4204
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3895538
dc.description.abstractWe consider the Sobolev inner product< f, g > = integral(1)(-1)f(x)g(x)d psi((alpha,beta))(x) + integral f'(x)g'(x)d psi(x),where d psi((alpha,beta))(x) = (1 = x)(alpha)(1 + x)(beta)dx with alpha, beta > -1, and psi is a measure involving a rational modification of a Jacobi weight and with a mass point outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product on different regions of the complex plane. In fact, we obtain the outer and inner strong asymptotics for these polynomials as well as the Mehler-Heine asymptotics which allow us to obtain the asymptotics of the largest zeros of these polynomials. We also show that in a certain sense the above inner product is also equilibrated. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc. Elsevier B.V.
dc.relationJournal of Approximation Theory
dc.relation0.939
dc.relation0,907
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectOrthogonal polynomials
dc.subjectSobolev orthogonal polynomials
dc.subjectAsymptotic
dc.titleAsymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
dc.typeArtigo


Este ítem pertenece a la siguiente institución