dc.contributorInst Estudos Avancados
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:33Z
dc.date.accessioned2022-10-05T14:48:28Z
dc.date.available2014-05-20T14:01:33Z
dc.date.available2022-10-05T14:48:28Z
dc.date.created2014-05-20T14:01:33Z
dc.date.issued1998-09-01
dc.identifierIEEE Transactions on Magnetics. New York: IEEE-Inst Electrical Electronics Engineers Inc., v. 34, n. 5, p. 3387-3390, 1998.
dc.identifier0018-9464
dc.identifierhttp://hdl.handle.net/11449/21721
dc.identifier10.1109/20.717797
dc.identifierWOS:000075960200244
dc.identifier2-s2.0-33747216723
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3895468
dc.description.abstractA MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relationIEEE Transactions on Magnetics
dc.relation1.467
dc.relation0,488
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectHelmholtz equations
dc.subjectfinite element methods
dc.subjectanisotropic media
dc.subjectsoftware tools
dc.titleMATHEMATICA notebook for computing tetrahedral finite element shape functions and matrices for the Helmholtz equation
dc.typeArtigo


Este ítem pertenece a la siguiente institución