dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:31Z
dc.date.accessioned2022-10-05T14:48:24Z
dc.date.available2014-05-20T14:01:31Z
dc.date.available2022-10-05T14:48:24Z
dc.date.created2014-05-20T14:01:31Z
dc.date.issued2001-08-01
dc.identifierJournal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 133, n. 1-2, p. 331-340, 2001.
dc.identifier0377-0427
dc.identifierhttp://hdl.handle.net/11449/21710
dc.identifier10.1016/S0377-0427(00)00653-1
dc.identifierWOS:000170613700027
dc.identifierWOS000170613700027.pdf
dc.identifier1681267716971253
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3895461
dc.description.abstractWe discuss an old theorem of Obrechkoff and some of its applications. Some curious historical facts around this theorem are presented. We make an attempt to look at some known results on connection coefficients, zeros and Wronskians of orthogonal polynomials from the perspective of Obrechkoff's theorem. Necessary conditions for the positivity of the connection coefficients of two families of orthogonal polynomials are provided. Inequalities between the kth zero of an orthogonal polynomial p(n)(x) and the largest (smallest) zero of another orthogonal polynomial q(n)(x) are given in terms of the signs of the connection coefficients of the families {p(n)(x)} and {q(n)(x)}, An inequality between the largest zeros of the Jacobi polynomials P-n((a,b)) (x) and P-n((alpha,beta)) (x) is also established. (C) 2001 Elsevier B.V. B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal of Computational and Applied Mathematics
dc.relation1.632
dc.relation0,938
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectconnection coefficients
dc.subjectzeros of orthogonal polynomials
dc.subjectDescartes' rule of signs
dc.subjectWronskians
dc.subjectinequalities for zeros
dc.titleConnection coefficients and zeros of orthogonal polynomials
dc.typeArtigo


Este ítem pertenece a la siguiente institución