Artigo
Differential distribution of some extracellular matrix fibers in an experimentally denervated rat megaileum
Fecha
2008-06-01Registro en:
Micron. Oxford: Pergamon-Elsevier B.V. Ltd, v. 39, n. 4, p. 397-404, 2008.
0968-4328
10.1016/j.micron.2007.03.004
WOS:000256983000007
0000-0002-0970-4288
Autor
Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
Resumen
Absence of enteric neurons is associated with thickening of the intestinal muscularis externa in Chagas' disease. The thickening is due to hyperplasia and hypertrophy of the smooth muscle cells and increased extracellular matrix components. The influence of the nervous system on the structure of the smooth muscle cells and its associated matrix has been poorly investigated. An experimental model of denervation of the ileum in rats was performed by application of the surfactant agent benzalkonium chloride that selectively destroys the myenteric plexus. Three months later, ileal tissue samples were obtained and studied by histochemistry and transmission electron microsocopy. Sham operated rats were used as controls. The diameter of collagen fibrils was evaluated in electron micrographs. The histopathological analysis showed thickening of the muscular layer. The thin and weakly arranged collagen and reticulin fibers surrounding the smooth muscle cells, observed in control cases by Picrosirius polarization (PSP) stain method, corresponded to a population of loosely packed thin collagen fibrils of uniform diameters (mean = 29.16 nm) at the ultrastructural level. In contrast, the thick and strongly birefringent fibers around the muscle cells, observed in the treated group, stained by PSP, corresponded to densely packed thicker fibrils with large variation in diameter (mean = 39.41 nm). Comparison of the data demonstrated statistically significant difference between the groups suggesting that the replacement of loosely arranged reticulin fibers by fibrous tissue (with typical collagen fiber), may alter the biomechanical function resulting in impairment of muscular contraction. (c) 2007 Elsevier Ltd. All rights reserved.