dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de Minas Gerais (UFMG)
dc.date.accessioned2014-05-20T13:53:28Z
dc.date.accessioned2022-10-05T14:29:18Z
dc.date.available2014-05-20T13:53:28Z
dc.date.available2022-10-05T14:29:18Z
dc.date.created2014-05-20T13:53:28Z
dc.date.issued2010-08-01
dc.identifierJournal of Electronic Materials. New York: Springer, v. 39, n. 8, p. 1170-1176, 2010.
dc.identifier0361-5235
dc.identifierhttp://hdl.handle.net/11449/19082
dc.identifier10.1007/s11664-010-1161-0
dc.identifierWOS:000279504900008
dc.identifier7730719476451232
dc.identifier1802982806436894
dc.identifier0000-0001-5762-6424
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3893267
dc.description.abstractThe natural n-type conduction of tin dioxide (SnO2) may be compensated by trivalent rare-earth doping. In this work, SnO2 thin films doped with Eu3+ have been deposited by the sol-gel dip-coating (SGDC) process, topped by a GaAs layer deposited by the resistive evaporation technique. The goal is the combination of a very efficient rare-earth emitting matrix with a high-mobility semiconductor. The x-ray diffraction pattern of SnO2:Eu/GaAs heterojunctions showed simultaneously the crystallographic plane characteristics of GaAs as well as cassiterite SnO2 structure. The electric resistance of the heterojunction device is much lower than the resistance of the SnO2:2 at.%Eu and GaAs films considered separately. Micrographs obtained by scanning electron microscopy (SEM) of the cross-section showed that the interface is clearly identified, exhibiting good adherence and uniformity. A possible explanation for the low resistivity of the SnO2:2 at.%Eu/GaAs heterojunction is the formation of small channels with two-dimensional electron gas (2DEG) behavior.
dc.languageeng
dc.publisherSpringer
dc.relationJournal of Electronic Materials
dc.relation1.566
dc.relation0,474
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectTin dioxide
dc.subjectgallium arsenide
dc.subjectheterojunction
dc.subjecteuropium
dc.titleInterface Formation and Electrical Transport in SnO2:Eu3+/GaAs Heterojunction Deposited by Sol-Gel Dip-Coating and Resistive Evaporation
dc.typeArtigo


Este ítem pertenece a la siguiente institución