dc.contributorUniv Autonoma Barcelona
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:30:39Z
dc.date.accessioned2022-10-05T13:32:57Z
dc.date.available2014-05-20T13:30:39Z
dc.date.available2022-10-05T13:32:57Z
dc.date.created2014-05-20T13:30:39Z
dc.date.issued2012-01-01
dc.identifierNonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 75, n. 1, p. 143-152, 2012.
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11449/10403
dc.identifier10.1016/j.na.2011.08.013
dc.identifierWOS:000296490000014
dc.identifier8032879915906661
dc.identifier0000-0002-8723-8200
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3886587
dc.description.abstractLet n be an even integer. We study the bifurcation of limit cycles from the periodic orbits of the n-dimensional linear center given by the differential system<(x)over dot>(1) = -x(2), <(x)over dot>(2) = x(1), ... , <(x)over dot>(n-1) = -x(n), <(x)over dot>(n) = x(n-1),perturbed inside a class of piecewise linear differential systems. Our main result shows that at most (4n - 6)(n/2-1) limit cycles can bifurcate up to first-order expansion of the displacement function with respect to a small parameter. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed. (C) 2011 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relation1.291
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectLimit cycles
dc.subjectBifurcation
dc.subjectControl systems
dc.subjectAveraging method
dc.subjectPiecewise linear differential systems
dc.subjectCenter
dc.titleBifurcation of limit cycles from an n-dimensional linear center inside a class of piecewise linear differential systems
dc.typeArtigo


Este ítem pertenece a la siguiente institución