dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:29:11Z
dc.date.accessioned2022-10-05T13:28:02Z
dc.date.available2014-05-20T13:29:11Z
dc.date.available2022-10-05T13:28:02Z
dc.date.created2014-05-20T13:29:11Z
dc.date.issued2011-05-01
dc.identifierIEEE Transactions on Power Systems. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 26, n. 2, p. 532-540, 2011.
dc.identifier0885-8950
dc.identifierhttp://hdl.handle.net/11449/9811
dc.identifier10.1109/TPWRS.2010.2061877
dc.identifierWOS:000289904200005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3886086
dc.description.abstractA method for spatial electric load forecasting using a reduced set of data is presented. The method uses a cellular automata model for the spatiotemporal allocation of new loads in the service zone. The density of electrical load for each of the major consumer classes in each cell is used as the current state, and a series of update rules are established to simulate S-growth behavior and the complementarity among classes. The most important features of this method are good performance, few data and the simplicity of the algorithm, allowing for future scalability. The approach is tested in a real system from a mid-size city showing good performance. Results are presented in future preference maps.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relationIEEE Transactions on Power Systems
dc.relation5.255
dc.relation2,742
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectCellular automata
dc.subjectdistribution planning
dc.subjectknowledge extraction
dc.subjectland use
dc.subjectspatial electric load forecasting
dc.titleA Cellular Automaton Approach to Spatial Electric Load Forecasting
dc.typeArtigo


Este ítem pertenece a la siguiente institución