dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Autonoma Barcelona
dc.date.accessioned2014-05-20T13:26:36Z
dc.date.accessioned2022-10-05T13:20:05Z
dc.date.available2014-05-20T13:26:36Z
dc.date.available2022-10-05T13:20:05Z
dc.date.created2014-05-20T13:26:36Z
dc.date.issued2011-11-01
dc.identifierInternational Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 21, n. 11, p. 3181-3194, 2011.
dc.identifier0218-1274
dc.identifierhttp://hdl.handle.net/11449/8604
dc.identifier10.1142/S0218127411030441
dc.identifierWOS:000298815900007
dc.identifier8032879915906661
dc.identifier0000-0002-8723-8200
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3885179
dc.description.abstractWe study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in R(n) perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationInternational Journal of Bifurcation and Chaos
dc.relation1.501
dc.relation0,568
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectDiscontinuous piecewise linear differential systems
dc.subjectLimit cycles
dc.subjectaveraging theory
dc.titleLIMIT CYCLES of DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
dc.typeArtigo


Este ítem pertenece a la siguiente institución