dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Univ Autonoma Barcelona | |
dc.date.accessioned | 2014-05-20T13:26:36Z | |
dc.date.accessioned | 2022-10-05T13:20:05Z | |
dc.date.available | 2014-05-20T13:26:36Z | |
dc.date.available | 2022-10-05T13:20:05Z | |
dc.date.created | 2014-05-20T13:26:36Z | |
dc.date.issued | 2011-11-01 | |
dc.identifier | International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 21, n. 11, p. 3181-3194, 2011. | |
dc.identifier | 0218-1274 | |
dc.identifier | http://hdl.handle.net/11449/8604 | |
dc.identifier | 10.1142/S0218127411030441 | |
dc.identifier | WOS:000298815900007 | |
dc.identifier | 8032879915906661 | |
dc.identifier | 0000-0002-8723-8200 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3885179 | |
dc.description.abstract | We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in R(n) perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed. | |
dc.language | eng | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation | International Journal of Bifurcation and Chaos | |
dc.relation | 1.501 | |
dc.relation | 0,568 | |
dc.rights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Discontinuous piecewise linear differential systems | |
dc.subject | Limit cycles | |
dc.subject | averaging theory | |
dc.title | LIMIT CYCLES of DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS | |
dc.type | Artigo | |