dc.creatorSoares Araujo, Carlos Vicente
dc.creatorPinheiro de Cristo, Marco Antônio
dc.creatorGiusti, Rafael
dc.date2020-12-23
dc.date.accessioned2022-10-04T22:27:46Z
dc.date.available2022-10-04T22:27:46Z
dc.identifierhttps://seer.ufrgs.br/index.php/rita/article/view/RITA_VOL27_NR4_108
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3870436
dc.descriptionThe global music market moves billions of dollars every year, most of which comes from streamingplatforms. In this paper, we present a model for predicting whether or not a song will appear in Spotify’s Top 50, a ranking of the 50 most popular songs in Spotify, which is one of today’s biggest streaming services. To make this prediction, we trained different classifiers with information from audio features from songs that appeared in this ranking between November 2018 and January 2019. When tested with data from June and July 2019, an SVM classifier with RBF kernel obtained accuracy, precision, and AUC above 80%.en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstituto de Informática - Universidade Federal do Rio Grande do Sulen-US
dc.relationhttps://seer.ufrgs.br/index.php/rita/article/view/RITA_VOL27_NR4_108/pdf
dc.rightsCopyright (c) 2020 Carlos Vicente Soares Araujo, Marco Antônio Pinheiro de Cristo, Rafael Giustipt-BR
dc.sourceRevista de Informática Teórica e Aplicada; Vol. 27 No. 4 (2020); 108-117en-US
dc.sourceRevista de Informática Teórica e Aplicada; v. 27 n. 4 (2020); 108-117pt-BR
dc.source2175-2745
dc.source0103-4308
dc.subjectMusicen-US
dc.subjectHit Song Scienceen-US
dc.subjectMachine Learningen-US
dc.subjectSpotifyen-US
dc.titleA Model for Predicting Music Popularity on Streaming Platformsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución