dc.contributorRocha, Adson Ferreira da
dc.creatorBarbosa, Luiz José Lucas
dc.date.accessioned2021-06-02T15:33:29Z
dc.date.accessioned2022-10-04T15:09:02Z
dc.date.available2021-06-02T15:33:29Z
dc.date.available2022-10-04T15:09:02Z
dc.date.created2021-06-02T15:33:29Z
dc.date.issued2021-06-02
dc.identifierBARBOSA, Luiz José Lucas. Electromyographic signal processing using machine learning and entropy. 2020. xxiv, 40 f., il. Dissertação (Mestrado em Engenharia Biomédica)—Brasília, 2020.
dc.identifierhttps://repositorio.unb.br/handle/10482/41090
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3858506
dc.description.abstractO sinal eletromiográfico é utilizado em diversas áreas da Medicina e da Biologia e tem sido uma opção cada vez mais explorada para o controle de próteses robóticas. Atualmente, várias próteses manuais comerciais utilizam uma malha de controle sequencial, o que torna o movimento da prótese menos fluido e dependente de sensores externos para a execução dos movimentos. Este trabalho teve como objetivo desenvolver métodos que usam sinais de eletromiografia de superfície (sEMG) para melhorar o controle em tempo real das próteses de mão. O objetivo era usar métodos para extrair características, classificar padrões em sEMG e empregar treinamento adaptativo para reconhecer movimentos das mãos com vários graus de liberdade, aumentando assim o conforto do usuário e dando naturalidade ao movimento. Os métodos propostos permitiram o reconhecimento efetivo dos movimentos das mãos por meio de várias estratégias que permitiram simplificar o processo de reconhecimento e reduzir o comprimento da janela móvel usual no processamento da EMG. Os classificadores foram desenvolvidos e testados nas bases de dados disponíveis na plataforma Open Source BioPatRec; a linguagem usada para os algoritmos foi python, com o auxílio das bibliotecas Scikit-learn, ScyPy e Tensorflow. Vários indicadores estatísticos têm sido aplicados para avaliar o reconhecimento de padrões, tanto offline quanto online, e os resultados têm mostrado melhora significativa no processo de reconhecimento de padrões em tempo real, sugerindo que os métodos têm bom potencial para uso futuro em próteses robóticas.
dc.languageInglês
dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
dc.rightsAcesso Aberto
dc.titleElectromyographic signal processing using machine learning and entropy
dc.typeTesis


Este ítem pertenece a la siguiente institución