Tesis
Discriminante para mistura de distribuições GEV
Fecha
2017-08-03Registro en:
CRUVINEL, Evelyn de Castro. Discriminante para mistura de distribuições GEV. 2017. 92 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2017.
Autor
Cruvinel, Evelyn de Castro
Institución
Resumen
Este trabalho apresenta o estudo de um discriminante não linear da mistura de duas distribuições de valor extremo generalizada, conhecidas como GEV, com o parâmetro de escala comum. Como o parâmetro de forma da GEV pode assumir valor positivo, negativo ou nulo foram considerados seis casos possíveis para mistura de duas distribuições GEV. Para uma amostra classificada e não classificada de uma população com distribuição mistura de duas GEV são obtidas as expressões a serem resolvidas para obter os estimadores de máxima verossimilhança dos parâmetros do modelo, bem como sua função de discriminante. A avaliação do modelo proposto é feita por meio de simulações Monte Carlo utilizando amostras de tamanho n = 50 e n =100 para dois conjuntos de parâmetros para cada caso possível de mistura de duas distribuições GEV. São apresentadas duas aplicações em dados reais que ilustram a eficiência da análise discriminante do modelo de mistura de duas distribuições GEV em situações bimodais.