Tesis
Hipersuperfícies Weingarten de tipo esférico em formas espaciais
Fecha
2020-06-24Registro en:
REYES, Edwin Oswaldo Salinas. Hipersuperfícies Weingarten de tipo esférico em formas espaciais. 2019. 65 f., Tese (Doutorado em Matemática)—Universidade de Brasília, Brasília, 2019.
Autor
Reyes, Edwin Oswaldo Salinas
Institución
Resumen
Neste trabalho, usando congruências de esféras geodésicas, estendemos os resultados obtidos em [28] para hipersuperfícies em formas espaciais, isto é, generalizamos a parametrização obtida por Machado em [28] no espaço Euclidiano (n + 1)-dimensional, para hipersuperfícies Σ nas formas espaciais M^{n+1}(c), c = 0, ±1. Caracterizamos as hipersuperfícies de M^{n+1}(c) que são envelopes de uma congruência de esferas geodésicas em M^{n+1}(c) na qual o outro envelope está contido em M^{n}(c) ⊂ M^{n+1}(c). Mostramos que esta caracterização nos permite obter hipersuperfícies Σ ⊂ M^{n+1}(c) localmente associadas a M^{n}(c) por uma transformação de Ribaucour e construimos superfícies de Dupin parametrizadas por linhas de curvatura associadas a M^{3}(c), c=±1, por uma transformação de Ribaucour. Apresentamos duas generalizações das superfícies de tipo esférico estudadas por [32], a saber as hipersuperfícies Weingarten de tipo esférico e as hipersuperfícies de tipo esférico em formas espaciais M^{n+1}(c). Obtemos uma caracterização dessas hipersuperfícies que nos permite mostrar que a classe de hipersuperfícies Weingarten de tipo esférico e de tipo esférico coincidem no caso bi-dimensional. Caracterizamos as hipersuperfícies de rotação de tipo esférico em M^{n+1}(c) usando funções radiais. Também, classificamos as hipersuperfícies Weingarten de tipo esférico e de rotação de tipo esférico a traves de funções radiais dadas explicitamente. Finalmente, damos uma caracterização das hipersuperfícies de tipo esférico em M^{n+1}(c).