dc.contributorSilva, Cibele Queiroz da
dc.contributorFokoué, Ernest
dc.creatorAzevêdo, Luana Lúcia Alves de
dc.date.accessioned2018-11-09T21:25:30Z
dc.date.accessioned2022-10-04T14:19:18Z
dc.date.available2018-11-09T21:25:30Z
dc.date.available2022-10-04T14:19:18Z
dc.date.created2018-11-09T21:25:30Z
dc.date.issued2018-11-09
dc.identifierAZEVÊDO, Luana Lúcia Alves de. Métodos estatísticos em aprendizado de máquinas para problemas de classificação. 2018. x, 131 f., il. Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2018.
dc.identifierhttp://repositorio.unb.br/handle/10482/33025
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3854062
dc.description.abstractAs técnicas de aprendizado de máquina são amplamente utilizadas em tarefas de classificação de dados. Neste trabalho, são apresentados três métodos de aprendizagem supervisionadas que são adequadas à classificação de indivíduos. Estes métodos foram aplicados a dois conjuntos de dados, com características distintas, e realizados estudos de simulação para comparações entre os resultados. O método RDA destacou-se por obter o melhor desempenho de classificação em dados massivos e caso de n n p. Por sua vez, as técnicas FA e SVM obtiveram o melhor desempenho quando aplicadas ao conjunto de dados em que nop. As técnicas de validação cruzada (VC) são úteis para a definição dos valores ótimos dos hiper-parâmetros dos modelos. Neste trabalho utilizou-se três técnicas de VC: Stratified Cross Validate (SCV), Leave-One-Out Cross Validation (LOOCV) e Shuffle and Split (SS). Para as comparações entre os resultados foram realizadas diversas análises, dentre elas, gráficos das curvas ROC, taxas de má classificação e EQMs. A avaliação final, utilizada para a escolha do melhor método de classificação, deu-se por meio do Erro Médio de Teste (Average Test Error - AVTE). As simulações e análises foram realizadas utilizando o software R.
dc.languagePortuguês
dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
dc.rightsAcesso Aberto
dc.titleMétodos estatísticos em aprendizado de máquinas para problemas de classificação
dc.typeTesis


Este ítem pertenece a la siguiente institución