dc.contributorCosta, João Paulo Carvalho Lustosa da
dc.contributorSousa Júnior, Rafael Timóteo de
dc.creatorLima, Daniel Valle de
dc.date.accessioned2021-08-25T03:08:47Z
dc.date.accessioned2022-10-04T14:03:37Z
dc.date.available2021-08-25T03:08:47Z
dc.date.available2022-10-04T14:03:37Z
dc.date.created2021-08-25T03:08:47Z
dc.date.issued2021-08-25
dc.identifierLIMA, Daniel Valle de. Time-delay estimation under non-clustered and clustered scenarios for GNSS signals. 2021. xvi, 161 f., il. Tese (Doutorado em Engenharia Elétrica)—Universidade de Brasília, Brasília, 2021.
dc.identifierhttps://repositorio.unb.br/handle/10482/41900
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3852614
dc.description.abstractAplicações que empregam sistemas globais de navegação por satélite, do inglês Global Navigation Satellite Systems (GNSS) para prover posicionamento acurado estão sujeitos a degradação drástica não só por intereferências eletromagnéticas, como também componentes de multipercurso causados por reflexões e refrações no ambiente. Aplicações de segurança crítica como veículos autonômos e aviação civil, e aplicações de risco crítico como gestão de pesca, pedágio automático, e agricultura de precisão dependem de posicionamento acurado sob cenários complicados. Tipicamente quanto mais agrupamento ocorre entre o componente de linha de visada, do inglês line-of-sight (LOS) e componentes de multipercurso ou não-linha de visada, do inglês non-line-of-sight (NLOS), menos acurada é a estimação da posição. Abordagens tensorials estado da arte para receptores GNSS baseado em arranjos de antenas utilizam processamento tensorial de sinais para separar o componente LOS dos componentes NLOS, assim mitigando os efeitos destes, utilizando decomposição em valores singulares multilinear, do inglês multilinear singular value decomposition (MLSVD) para gerar um autofiltro de order superior, do inglês higher-order eigenfilter (HOE) com pré-processamento por média frente-costas, do inglês forward-backward averaging (FBA), e suavização espacial expandida, do inglês expanded spatial smoothing (ESPS), estimação de direção de chegada, do inglês direction of arrival (DoA) e fatorização Khatri-Rao, do inglês Khatri-Rao factorization (KRF), estimação de Procrustes e fatorização Khatri-Rao (ProKRaft), e o sistema semi-algébrico de decomposição poliádica canônica por diagonalização matricial simultânea, do inglês semi-algebraic framework for approximate canonical polyadic decomposition via simultaneous matrix diagonalization (SECSI), respectivamente. Propomos duas abordagens de processamento para estimação de atraso, do inglês time-delay estimation (TDE). A primeira é a abordagem em lotes utilizando dados de vários períodos do sinal. Usando estimação em lotes propomos duas abordagens algébricas para TDE, em que diagonalizaçao é efetivada por decomposição generalizada em autovalores, do inglês generalized eigenvalue decomposition (GEVD), das primeiras duas fatias frontais do tensor núcleo do tensor de dados, estimado por MLSVD. Esta primeira abordagem, como os métodos citados, na quais simulações foram feitas com 1 componente LOS e 1 componente NLOS, assim os dados observados tem posto cheio em todos seus modos, não faz suposições sobre o posto do tensor de dados. A segunda abordagem supõe cenários nos quais mais de 1 componente NLOS está presente e são agregados (clustered em inglês), assim vários vetores de uma das matrizes-fator que formam o tensor de dados são altamente correlacionaiii dos, resultando num tensor de dados que é de posto deficiente em pelo menos um modo. Os esquemas algébricos baseados em tensores propostos utilizam a decomposição poliádica canônica por decomposição generalizada em autovalores, do inglês canonical polyadic decomposition via generalized eigenvalue decomposition (CPD-GEVD), e a decomposição em termos de posto-(Lr, Lr, 1) por decomposição generalizada em autovalores, do inglês decomposition in multilinear rank-(Lr, Lr, 1) terms via generalized eigenvalue decomposition ((Lr, Lr, 1)-GEVD) para melhorar a TDE do componente LOS sob cenários desafiadores. A segunda é a abordagem de processamento adaptativo de amostras individuais utilizando rastreamento de subespaço a cada período de código, epoch em inglês. Usando processamento adaptativo propomos duas abordagem, uma aplicando FBA expandido (EFBA) e ESPS ao dados e estimando um HOE, e outra usando usa estimação paramétrica para estimar a DoA. Estendendo o modelo para um arranjo retangular uniforme, do inglês uniform rectangular array (URA), o fluxo de dados são tensores de terceira ordem. Para este modelo propomos três abordagens para TDE baseado em HOE, CPD-GEVD, e ESPRIT tensorial, respectivamente e empregando uma estratégia de truncamento sequencial para reduzir a quantidade de operações necessárias para cada modo do tensor
dc.languageInglês
dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
dc.rightsAcesso Aberto
dc.titleTime-delay estimation under non-clustered and clustered scenarios for GNSS signals
dc.typeTesis


Este ítem pertenece a la siguiente institución