dc.contributorCosta, Alexandre Florian da
dc.contributorMiguel, Eder Pereira
dc.creatorOliveira, Elian Meneses
dc.date.accessioned2021-01-25T20:48:40Z
dc.date.accessioned2022-10-04T13:22:37Z
dc.date.available2021-01-25T20:48:40Z
dc.date.available2022-10-04T13:22:37Z
dc.date.created2021-01-25T20:48:40Z
dc.date.issued2021-01-25
dc.identifierOLIVEIRA, Elian Meneses. Redes neurais artificiais para predição da vida útil de madeiras da Amazônia em campo de apodrecimento. 2020. 141 f., il. Tese (Doutorado em Engenharia Florestal)—Universidade de Brasília, Brasília, 2020.
dc.identifierhttps://repositorio.unb.br/handle/10482/39958
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3848856
dc.description.abstractEste trabalho teve como objetivo avaliar a aplicação de inteligência artificial, por meio de redes neurais artificiais, para a predição da vida útil de madeiras não tratadas quimicamente e tratadas com arseniato de cobre cromatado (CCA) tipo C, instaladas em campo de apodrecimento em área de Cerrado do Distrito Federal. O teste em campo foi conduzido durante 40 meses, utilizando estacas das madeiras de sumaúma (Ceiba pentandra), marupá (Simarouba amara), curupixá (Micropholis melinoniana) e cerejeira (Amburana cearensis), cujos desempenhos foram avaliados através da perda de massa e das técnicas não destrutivas de ultrassom e espectroscopia no infravermelho próximo. O preservante químico CCA-C conferiu alta proteção às madeiras contra o ataque de fungos e insetos xilófagos, principalmente às espécies de baixa durabilidade natural. Dentre as madeiras não tratadas quimicamente, a cerejeira apresentou a maior resistência natural, possivelmente devido ao seu alto teor de extrativos. De modo geral, a velocidade de propagação da onda ultrassônica apresentou tendência de decréscimo para as madeiras não tratadas, enquanto que nas amostras com CCA- A mostrou maior estabilidade ao longo do período de exposição em campo. Os espectros de infravermelho próximo evidenciaram um consumo mais significativo da celulose, sobretudo nas amostras de madeiras não tratadas quimicamente. As redes neurais, do tipo MLP (do inglês Multilayer Perceptron), utilizando como variáveis preditoras dados provenientes das avaliações não destrutivas de ultrassom e espectroscopia no infravermelho próximo foram precisas na estimativa de perda de massa decorrente de biodeterioração e, por conseguinte, da vida útil da madeira. Os erros em torno de 15% validaram a indicação desta ferramenta de inteligência artificial para projeção de perda de massa e de problemas estruturais em estacas de madeiras em serviço.
dc.languagePortuguês
dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
dc.rightsAcesso Aberto
dc.titleRedes neurais artificiais para predição da vida útil de madeiras da Amazônia em campo de apodrecimento
dc.typeTesis


Este ítem pertenece a la siguiente institución