Brasil | Tese de Doutorado
dc.contributorEduardo Luiz Goncalves Rios Neto
dc.contributorRosangela Helena Loschi
dc.contributorCassio Maldonado Turra
dc.contributorAna Maria Hermeto Camilo de Oliveira
dc.contributorRenato Martins Assuncao
dc.contributorSuzana M. Cavenaghi
dc.contributorMarcia D`elia Branco
dc.creatorRaquel Rangel de Meireles Guimaraes
dc.date.accessioned2019-08-12T00:07:11Z
dc.date.accessioned2022-10-04T00:59:12Z
dc.date.available2019-08-12T00:07:11Z
dc.date.available2022-10-04T00:59:12Z
dc.date.created2019-08-12T00:07:11Z
dc.date.issued2014-03-07
dc.identifierhttp://hdl.handle.net/1843/AMSA-9K2QCG
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3838019
dc.description.abstractThe APC framework for modeling and forecasting the education profile of Brazilian males and females is considered from both classical and Bayesian perspectives. For a classical analysis, I calculate maximum likelihood estimates of APC parameters. For the Bayesian analysis, I estimate posterior means and credible intervals. Both methods are simple and computationally efficient. Results show that both classical and Bayesian methods are able to provide very good forecasts in the short term. However, the Bayesian method performed best for in-sample and out-of-sample forecasts. On the other hand, in a Bayesian setting, uncertainty indeed becomes an issue for long-term forecasts because of the rapidly increasing width of the intervals as the length of the projection increases. A number of enhancements of the classical and Bayesian methods proposed here are suggested for a future research agenda. Foremost is an investigation into an integrated approach to account for uncertainty in the classical multinomial APC model and refined ways of eliciting prior information in the Bayesian framework.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectModelo Idade-período-coorte
dc.subjectEstatística Clássica
dc.subjectPrevisões
dc.subjectEstatística Bayesian
dc.titleEducation Projections using Age-Period-Cohort Models: Classical and Bayesian Approaches
dc.typeTese de Doutorado


Este ítem pertenece a la siguiente institución