dc.contributorSônia Pinto de Carvalho
dc.contributorhttp://lattes.cnpq.br/6695125616195750
dc.contributorJosé Barbosa Gomes.
dc.contributorLuciano Coutinho dos Santos.
dc.contributorMarco Antônio Teixeira.
dc.contributorSylvie Marie Oliffson Kamphorst Leal Da Silva
dc.contributorMatthew Joseph Perlmutter.
dc.creatorVitor Luiz de Almeida
dc.date.accessioned2020-05-22T18:06:52Z
dc.date.accessioned2022-10-04T00:37:43Z
dc.date.available2020-05-22T18:06:52Z
dc.date.available2022-10-04T00:37:43Z
dc.date.created2020-05-22T18:06:52Z
dc.date.issued2017-12-14
dc.identifierhttp://hdl.handle.net/1843/33526
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3835385
dc.description.abstractLet Q be a strictly geodesically convex region in the hyperbolic plane bounded by a closed curve with strictly positive geodesic curvature. A billiard on Q consists in the particle’s free motion suffering elastic collisions with the boundary of the region. On this tesis, we will show that, generically, a periodic trajectory do not hit multiple times a same point with distinct angles. Additionally, we will show that, generically, two distinct periodic orbits and with same period do not have common points. The main tool we use is Thom’s transversality theorem on multijets of functions in C∞emb (T, H2 ).
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.rightsAcesso Aberto
dc.subjectBilhares convexos
dc.subjectPlano hiperbólico
dc.subjectÓrbitas periódicas
dc.subjectDefeito zero
dc.titleDefeito zero para bilhares convexos em H2
dc.typeTese


Este ítem pertenece a la siguiente institución