dc.contributorViktor Bekkert
dc.contributorJohn William Macquarrie
dc.contributorRenato Vidal da Silva Martins
dc.creatorKaren Lizeth Martinez Acosta
dc.date.accessioned2019-08-10T05:24:14Z
dc.date.accessioned2022-10-04T00:24:29Z
dc.date.available2019-08-10T05:24:14Z
dc.date.available2022-10-04T00:24:29Z
dc.date.created2019-08-10T05:24:14Z
dc.date.issued2019-04-16
dc.identifierhttp://hdl.handle.net/1843/EABA-BBTFSP
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3833813
dc.description.abstractA finite partially ordered set (poset) X carries a natural structure of a topological space, so we can consider the category of sheaves over X with values in an abelian category A which can be identified with the category of covariant functors from the Hasse diagram of X into A. In particular, when A is the category of finite dimensional vector spaces over a field k, the category of sheaves over X with values in A is equivalent to the category of finite dimensional right modules over the incidence algebra of X over k. In this work we present a detailed study of the category of sheaves over posets with values in an abelian category A based on the article [20] of Sefi Ladkani and, more specifically, as main objective, we show a construction in which the author used ideas of algebraic topology and algebraic geometry to obtain derivedequivalences between the incidence algebra of a poset X and incidence algebras of posets induced by closed subsets of X.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectálgebras
dc.subjectderivadas
dc.subjectfeixes
dc.titleCategorias de feixes, álgebras de incidência e equivalências derivadas
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución