Funções de Green e aplicações a problemas elípticos
dc.contributor | Emerson Alves Mendonça de Abreu | |
dc.contributor | Hamilton Prado Bueno | |
dc.contributor | Grey Ercole | |
dc.creator | Roy Percy Tocto Guarniz | |
dc.date.accessioned | 2019-08-10T18:39:28Z | |
dc.date.accessioned | 2022-10-04T00:01:05Z | |
dc.date.available | 2019-08-10T18:39:28Z | |
dc.date.available | 2022-10-04T00:01:05Z | |
dc.date.created | 2019-08-10T18:39:28Z | |
dc.date.issued | 2014-02-20 | |
dc.identifier | http://hdl.handle.net/1843/EABA-9GXNNA | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3830913 | |
dc.description.abstract | In this work, we study the Laplace equation in the half-space RN + with a nonlinear supercritical Robin boundary condition ¶u¶h + lu = ujujr??1 + f (x) on ¶RN+ = RN??1, where N _ 3and l _ 0. Existence of solution u 2 Ep,q = D1,p(RN +) \ Lq(RN+) is obtained by means of a fixed point argument for a small data f 2 Ld(RN??1). The indexes p, q are chosen for the norm k _ kEp,q to be invariant by scaling of the boundary problem. The solution u is positive whether f (x) > 0 a.e. x 2 RN??1. When f is radially symmetric, u is invariant under rotations around the axis fxN = 0g. Moreover, in a certain Lq-norm, we show that solutions depend continuosly on the parameter l _ 0. | |
dc.publisher | Universidade Federal de Minas Gerais | |
dc.publisher | UFMG | |
dc.rights | Acesso Aberto | |
dc.subject | Funções de green | |
dc.title | Funções de Green e aplicações a problemas elípticos | |
dc.type | Dissertação de Mestrado |