dc.contributorViktor Bekkert
dc.contributorhttp://lattes.cnpq.br/9937816026082733
dc.contributorEdson Ribeiro Alvares
dc.contributorEduardo do Nascimento Marcos
dc.contributorFlávio Ulhoa Coelho
dc.contributorJohn William Macquarrie
dc.creatorClaudiano Henrique da Cunha Melo
dc.date.accessioned2021-10-18T00:15:33Z
dc.date.accessioned2022-10-03T23:59:23Z
dc.date.available2021-10-18T00:15:33Z
dc.date.available2022-10-03T23:59:23Z
dc.date.created2021-10-18T00:15:33Z
dc.date.issued2021-03-26
dc.identifierhttp://hdl.handle.net/1843/38394
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3830715
dc.description.abstractIn this work we show that any truncated serial algebra is derived equivalent to an incidence algebra on a poset. We have used this result to generalize the result of Happel and Seidel about the classification of piecewise hereditary truncated Nakayama algebras to the class of right serial algebras that are collages, in their respective sinks, of hereditary algebras and truncated algebras with quivers An and Dn.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.rightsAcesso Aberto
dc.subjectCategorias derivadas
dc.subjectÁlgebras seriais truncadas
dc.subjectÁlgebras de incidência de posets
dc.titleÁlgebras seriais truncadas, álgebras de incidência de posets e equivalências derivadas
dc.typeTese


Este ítem pertenece a la siguiente institución