dc.contributorJoao Antonio de Vasconcelos
dc.contributorCristiano Leite de Castro
dc.contributorMarconi de Arruda Pereira
dc.creatorDiego Silva Caldeira Rocha
dc.date.accessioned2019-08-12T16:45:56Z
dc.date.accessioned2022-10-03T23:33:57Z
dc.date.available2019-08-12T16:45:56Z
dc.date.available2022-10-03T23:33:57Z
dc.date.created2019-08-12T16:45:56Z
dc.date.issued2018-06-08
dc.identifierhttp://hdl.handle.net/1843/BUBD-B4PP45
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3824639
dc.description.abstractRotary machines such as motors, generators and pumps are commonly used in almost all industrial processes. The analysis of mechanical vibrations has been an important technique adopted in companies to evaluate the state of operation of industrial machines. This work uses a database of mechanical vibration signals to automati-cally classify faults in rotary machines. Three models of extraction of characteristics of mechanical vibration signals are presented: (i) RMS (Root Means Squares), (ii) Haar Wavelet and fractal dimension and (iii) FFT (Fast Fourier transform) with statistical data. Finally, the machine learning concept is used with the classifiers KNN (K-NearestNeighbors), SVM (Support Vector Machine) and XGBoost (Extreme Gradient Boosting) to diagnose faults. The results demonstrate the effi ciency of all the techniques, although wavelet approach and fractal dimension combined with XGBoost, presenting the best results. It was possible to reach an accuracy of 98 . 7% (MAUC (Multi-class Extension ofAUC)=0.9704) on rotating machine failures and 99 . 36% of accuracy (MAUC=0.9965) for bearing problems. In addition, it obtained remarkable intraclass results and was very promising for the subject of this dissertation.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectDiagnóstico de falhas em máquinas rotativas
dc.subjectXGBoost
dc.subjectExtração de características
dc.subjectKNN
dc.subjectSVM
dc.subjectVibrações mecânicas
dc.titleAprendizado de máquina aplicado ao reconhecimento automático de falhas em máquinas rotativas
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución