dc.contributorSylvie Marie Oliffson Kamphorst Leal da Silva
dc.contributorhttp://lattes.cnpq.br/9587565395676379
dc.contributorGustavo Henrique de Oliveira Salgado
dc.contributorKarina Daniela Marín
dc.contributorSônia Pinto de Carvalho
dc.creatorLuís Felipe Sobreira Amaral
dc.date.accessioned2021-09-19T23:25:29Z
dc.date.accessioned2022-10-03T23:24:35Z
dc.date.available2021-09-19T23:25:29Z
dc.date.available2022-10-03T23:24:35Z
dc.date.created2021-09-19T23:25:29Z
dc.date.issued2019-02-22
dc.identifierhttp://hdl.handle.net/1843/38081
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3822100
dc.description.abstractThe goal of the present work is to show a study of local aspects of the dynamics from the family of conservative cubic Hénon maps in a neighbourhood of its fixed points, that could be hyperbolic, reversed hyperbolic, elliptic or parabolic. The definitions of stability and instability used are given by J. K. Moser. On the hyperbolic and reversed hyperbolic cases, it will be proven that every diffeomorphism is unstable in its fixed point, using the Hartman–Grobman Theorem. It will be shown, on the first case, the existence of topologically transverse homoclinic points for a large parcel of the family in question. Therefore, the maps that satisfies this condition are chaotics near the fixed point. On the elliptic case, it will be proven that the maps are stable in all its fixed points non-resonants until sixth order, where the Birkhoff’s Normal Form and the Moser’s Twist Theorems are used. For the parabolic case, it will be shown that the maps of the referred family are unstable on the fixed point according to a criterion established by T. Levi-Civita, with the exception of two of them, in which case there is no statement about its stability.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectAplicação de Hénon generalizada
dc.subjectPonto fixo
dc.subjectBifurcação
dc.subjectNão-ressonância
dc.subjectEstabilidade
dc.subjectInstabilidade
dc.subjectCaoticidade
dc.titleEstudo da dinâmica local das aplicações de Hénon cúbicas conservativas
dc.typeDissertação


Este ítem pertenece a la siguiente institución