dc.contributorRodrygo Luis Teodoro Santos
dc.contributorNivio Ziviani
dc.contributorNivio Ziviani
dc.contributorAdriano Alonso Veloso
dc.contributorLeandro Balby Marinho
dc.creatorBruno Laporais Pereira
dc.date.accessioned2019-08-12T12:26:45Z
dc.date.accessioned2022-10-03T23:15:34Z
dc.date.available2019-08-12T12:26:45Z
dc.date.available2022-10-03T23:15:34Z
dc.date.created2019-08-12T12:26:45Z
dc.date.issued2017-03-31
dc.identifierhttp://hdl.handle.net/1843/JCES-ARFLHX
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3819556
dc.description.abstractThe prominent success of music streaming services has brought increasingly complex challenges for music recommendation. In particular, in a streaming setting, songs are consumed sequentially within a listening session, which should cater not only for the users historical preferences, but also for eventual preference drifts, triggered by a sudden change in the users context. In this dissertation, we propose a novel online learning-to-rankapproachformusicrecommendation, aimedtocontinuouslylearnfrom the users listening feedback. In contrast to existing online learning approaches for music recommendation, we leverage implicit feedback as the only signal of the users preference at each point in time. In a space of millions of songs, we represent each song in a lower dimensional space of continuous features. Our thorough evaluation using listening sessions from Last.fm demonstrates the eectiveness of our approach at learning faster and better compared to state-of-the-art online learning approaches.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectFeedback implícito
dc.subjectSistemas de recomendação
dc.subjectAprendizado online
dc.subjectRecomendação de músicas
dc.titleRecomendação online de músicas usando feedback implícito
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución