dc.contributorSônia Pinto de Carvalho
dc.contributorhttp://lattes.cnpq.br/6695125616195750
dc.contributorAndré Salles de Carvalho
dc.contributorJavier Alexis Correa Mayobre
dc.creatorLuciana Menezes Vasconcelos
dc.date.accessioned2021-09-10T16:41:48Z
dc.date.accessioned2022-10-03T23:13:14Z
dc.date.available2021-09-10T16:41:48Z
dc.date.available2022-10-03T23:13:14Z
dc.date.created2021-09-10T16:41:48Z
dc.date.issued2020-02-17
dc.identifierhttp://hdl.handle.net/1843/37977
dc.identifierhttps://orcid.org/ 0000-0001-6187-2177
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3818840
dc.description.abstractOne of the objectives of this paper was to understand Birkhoff's Invariant Curve Theorem which was first demonstrated by Birkhoff himself and has as an important consequence that every invariant rotational curve projects injectively over $ S ^ 1 $. In addition, we will present billiards, denoted non-elastic billiards, which have a modified law of reflection, corresponding to a contraction in the vertical fibers of an invariant rotational curve. These consist of simple examples of dynamic systems with limit set having dominated decomposition. We will prove that under some assumptions of differentiability and some limits in contraction, there is a compact range in phase space, where the application of non-elastic billiard map is a $C^2$ diffeomorphism.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherBrasil
dc.publisherICX - DEPARTAMENTO DE MATEMÁTICA
dc.publisherPrograma de Pós-Graduação em Matemática
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectBilhares
dc.subjectBilhares não-elásticos
dc.subjectDecomposição dominada
dc.subjectTeorema da Curva Invariante de Birkhoff
dc.titleTeorema da curva invariante de Birkhoff e bilhares não-elásticos
dc.typeDissertação


Este ítem pertenece a la siguiente institución