dc.contributorWagner Meira Junior
dc.contributorAhmed Ali Abdalla Esmin.
dc.contributorGisele Lobo Pappa
dc.contributorAhmed Ali Abdalla Esmin.
dc.contributorAdriano Alonso Veloso
dc.contributorThiago de Souza Rodrigues
dc.creatorTiago Amador Coelho
dc.date.accessioned2019-08-10T19:07:43Z
dc.date.accessioned2022-10-03T23:12:01Z
dc.date.available2019-08-10T19:07:43Z
dc.date.available2022-10-03T23:12:01Z
dc.date.created2019-08-10T19:07:43Z
dc.date.issued2011-03-29
dc.identifierhttp://hdl.handle.net/1843/SLSS-8GQQA6
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3818483
dc.description.abstractThis work presents a new method for multi-label classification based on Particle Swarm Optimization, called Multi Label K-Nearest Michigan Particle Swarm Optimization ML-KMPSO) and evaluates it experimentally using two real-world datasets. Multilabel learning first arose in the context of text categorization, where each document may belong to several classes simultaneously. In this work, we propose a new hybridapproach, ML-KMPSO. It is based on two strategies. The first strategy is the Michigan Particle Swarm Optimization (MPSO), which breaks the multi-label classification task into several binary classification problems, but it does not take into account the correlations among the various classes. The second strategy is Multi Label K-Nearest Neighbor (ML-KNN), which is complementary and takes into account the correlations among classes. We evaluated the performance of ML-KMPSO using two real-world datasets: Yeast gene functional analysis and natural scene classification. The experimental results show that ML-KMPSO produced results that match or outperform well-established multi-label learning algorithms.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectclassificação multi-rótulo
dc.subjectMineração de dados
dc.subjectMétodo de Enxame de Partículas
dc.titleUma estratégia híbrida para o problema de classificação multirrótulo
dc.typeDissertação de Mestrado


Este ítem pertenece a la siguiente institución