dc.contributorCsaba Schneider
dc.contributorJussara de Matos Moreira
dc.contributorRemy de Paiva Sanchis
dc.creatorRildo Nascimento de Oliveira
dc.date.accessioned2019-08-11T04:35:43Z
dc.date.accessioned2022-10-03T23:07:43Z
dc.date.available2019-08-11T04:35:43Z
dc.date.available2022-10-03T23:07:43Z
dc.date.created2019-08-11T04:35:43Z
dc.date.issued2016-07-06
dc.identifierhttp://hdl.handle.net/1843/EABA-ABRMWM
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3817212
dc.description.abstractOur goal in this work is to study which fields satisfy the Principal Axis Theorem. In other words, we classify those fields over which the Principal Axis Theorem is valid; that is, all symmetric matrices are orthogonally diagonalizable. In order to achieve this goal, we will introduce fields and their basic properties. We will study the Axiom of Choice and itsequivalent formulations. We will also study ordered fields and prove the Artin{Schreier Theorem. Then we will consider Pythagorean fields and real closed fields. Finally, using the tools that will have been introduced, we will characterize fields with the Principal Axis Property.
dc.publisherUniversidade Federal de Minas Gerais
dc.publisherUFMG
dc.rightsAcesso Aberto
dc.subjectortogonalização
dc.subjectformalmente real
dc.subjectdiagonalização
dc.subjectpitagórico
dc.subjectmatrizes
dc.subjectConjuntos
dc.subjectortonormalização
dc.subjectautovalores
dc.subjectautovetores
dc.subjectcorpo: ordenado
dc.subjectreal fechado Eixo principal
dc.titleCorpos com a propriedade dos eixos principais
dc.typeMonografias de Especialização


Este ítem pertenece a la siguiente institución